Service Function Chaining in Wildfire Scenarios

Bruno Sousa, Henrique Silva, <u>Noé Godinho</u>, Marilia Curado University of Coimbra, CISUC, DEI, Portugal

Noé Godinho, 4 February 2022

Outline

- Motivation \bullet
- Chaining functions of Mission Critical Services
- Evaluation
- Some Results & Current Steps

Noé Godinho et al., 4 February 2022, RCTM

Scientific Motivation

- Critical missions (e.g., Fire Fighting) include several services
 - Require availability of communication infrastructure (e.g. SLA 99.9%)
 - Strong security mechanisms (ideally cross-layer perspective)
- Mission Critical Services (MCS):
 - Voice Push to Talk (PTT)
 - Voice Full Duplex (FD)
 - Data Services for Location and IoT data (biosensors, environmental)
 - Multimedia (video streaming for accurate situational awareness)
 - Mission Analysis (Processing collected data to detect hazard events like Man Down)

Noé Godinho et al., 4 February 2022, RCTM

Motivation for Service Function Chaining

- Security for Mission Critical Services:
 - To work in a technology agnostic fashion (5G, WiFi 6, LORA, etc)
 - Can be enabled with Service Function Chaining (SFC):
 - Intrusion Detection and Prevention (IDPS)
 - Firewall
 - Authentication, Accounting and Authorisation (AAA)
 - Considering diverse deployment options (edge, cloud/centralised)

Service Function Chaining for MCS

- Each Mission Critical Service is:
 - Considered per the criticality and current services in Public Mobile Radio
 - Modelled with several functions with different complexity
 - Deployed in distinct NFV approac
 - One VM per service (approach A)
 - One VM per service function (approach B)

Approach	Description	#VMs
A	One VM per service	6
в	One VM per SF	15

Service	Service Function (SF)	Description	Comp. cost (MIPS)	
	Vo_conf	Conf. voice channels	[1, 30]	
Voice PTT	Vo_chan	Voice bridge & channels	[10, 50]	
	Vo_core	Voice core, record & log	[10, 50]	
Voice FD	VoFD_down	Voice bridge & channels from CCC to FR	s [10, 50]	
	VoFD_up	Voice bridge & channels from FR to CCC	[10, 50]	
Loc. Data	LocData	GPS location data	[1, 10]	
	LocData_map	Map location data	[10, 20]	
юТ	IoT_acq	Data acquisition from [1, 10] biosensors, sensors		
101	IoT_proc	IoT data processing	[10, 20]	
	IoT_ana	IoT analysis - risk maps	[20, 40]	
	Vid_conf	Video conf. (e.g. groups)	[10, 50]	
Multimedia	Vid_ana	Video real-time analysis	[700, 2000]	
	Vid_trans	Video transmission	[50, 200]	
	FW	Firewall & AAA	[20, 100]	
Security	IDPS	IDPS	[50, 150]	
Mission	SF_Mis_ana	Mission analysis	[10, 200]	
Analysis	nalysis Mis_sndData Upload data to cloud		[20, 40]	

Service Function Chaining Policies

- Devised to avoid unnecessary processing at intermediate layers:
 - Reduce end-to-end latency
 - Maximise operation time in the Operational Theatre

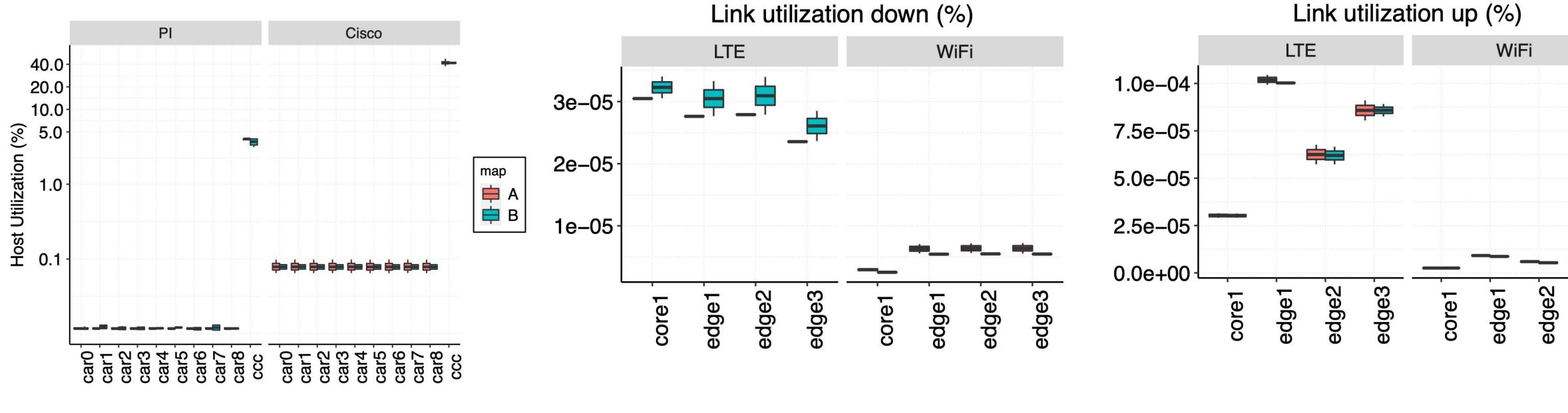
- Consider the node location (and mapping to OpenFog layer):
 - Vehicles for combat and with water tanks, nodes at the field, assure the edge layer (do not include configuration functions, or analytics)
 - Vehicles with communication facilities, nodes at intermediate and CCC layers (include mission analysis functions for real-time risk assessment)

Evaluation

- Simulation based using CloudSimSDN
- Scenario Complexity modelled as phase 1 (with few vehicles and first responders)
- Consider characteristics of LTE and WiFi for bandwidth and delay for links
- Evaluation metrics:
 - Utilisation of resources (in hosts and VMs)
 - Energy consumed
 - VM bandwidth utilisation
 - Link utilisation
 - CPU time and network time of SFs

Noé Godinho et al., 4 February 2022, RCTM

Consider two types of platforms with computational resources (Cisco and Raspberry Pi)


Service	Inter Arrival	Packet Size	Computational Cost (PI / Cisco)
Voice PTT	30s	[20, 200]	±1017 / ±1019
VoiceFD	45s	[20, 200]	$\pm 1017 / \pm 1019$
LocData	2s	[36, 100]	$\pm 511 / \pm 512$
IoTData	5s	[8, 500]	$\pm 2535 / \pm 2540$
Multimedia	60s	[250, 1300]	$\pm 6583 / \pm 6596$
MissionAna	120s/ 600s	[1000, 1500]	±7595 / ±7610

Results: Host and link utilisation

- The Cisco platform has higher utilisation (lower CPU clock)
- LTE has higher utilisation rates

Host utilisation

DownLink utilisation (from CCC to FR)

Uplink traffic leads to higher utilisation (flows are generated from FRs in the field)

Uplink utilisation (from FR to CCC)

Conclusion & Current Steps

- SFC in MCS need to optimise the placement of security functions
- The platform to support edge (at cars) needs to be carefully chosen
- SFC in MCS are also impact with the direction of flows and the characteristics supporting technologies.

Currently:

- We are studying the impact of Migration algorithms (distance and missionrelated)
- We are considering the complexity of the full operational theatre (phase 5 with more than 1000 human resources)

Noé Godinho et al., 4 February 2022, RCTM

Thank you

Additional questions bmsousa@dei.uc.pt