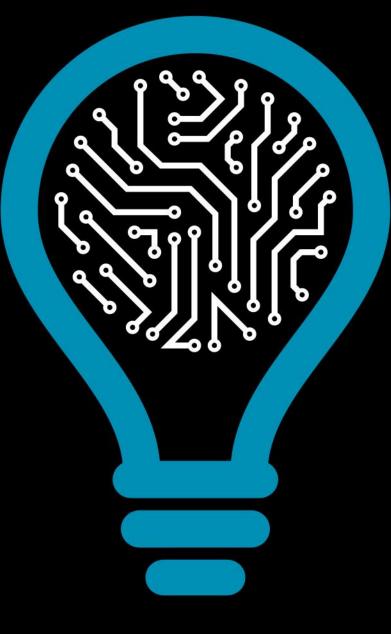
ns-3 as a Digital Twin for Wireless Testbeds

29º Seminário da RTCM


Helder Fontes

<u>helder.m.fontes@inesctec.pt</u> Assistant Researcher, Wireless Networks, CTM, INESC TEC

04-02-2021

INSTITUTE FOR SYSTEMS AND COMPUTER ENGINEERING, TECHNOLOGY AND SCIENCE

Introduction to ns-3

- ns-3 as a Digital Twin for Wireless Testbeds
 - Trace-based Simulation Approach
- Main Conclusions
- Future Work

Introduction to ns-3

- Network Simulation
- ns-3 Overview
- ns-3 some Protocols and Models
- ns-3 Simulation and Emulation

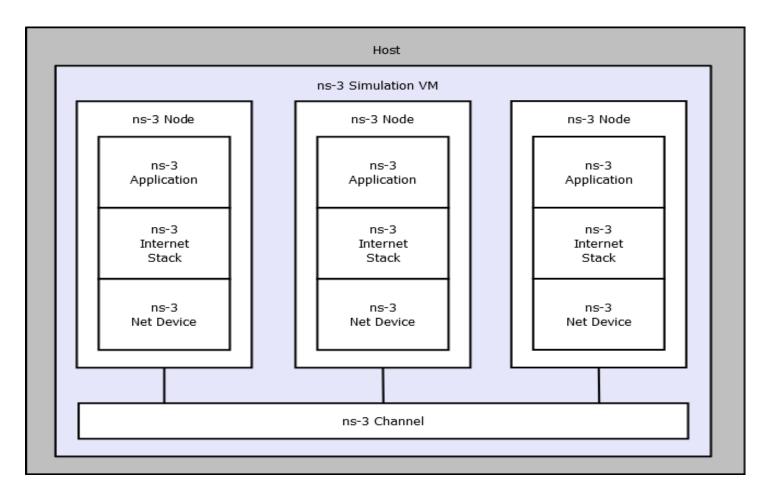
Network Simulation

- Goal
 - build a software **simulation model** of a system
 - analyze/study/improve/develop network protocols or applications
- Motivation
 - real testbeds are expensive, complex, unavailable
- Advantages
 - relatively easy to use and less time consuming
- Disadvantages
 - **simplified view** of complex interactions
 - could be immensely **misleading** \rightarrow e.g., if inadequate models are used, bad abstractions, etc.

Dependence on <u>assumptions</u> and <u>accuracy</u> of the simulated models

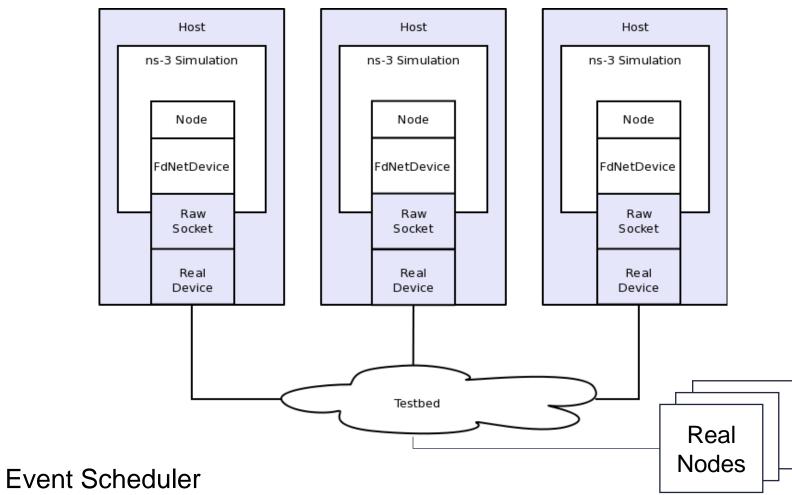
Typical Simulation Steps

- Define network scenario
 - Choose the right **simulation models** and **configure** them properly
 - Propagation Delay
 - Propagation Loss
 - Mobility
 - Channel and Wi-Fi standard
 - Network Traffic Routing
 - Applications for traffic generation
 - Random variables (for stochastic models)
- Run simulations
 - Multiple runs with different seeds for the random variables
- Process results
 - Analyze throughput, delay, packet loss, delay jitter, fairness, ...


ns-3 Overview

- ns-3 project started around mid 2006
 - First release in June 2008
 - Latest release January 2021 → ns-3.33
- ns-3 is a discrete-event network simulator for Internet systems
 - Packet level resolution
- ns-3 was written from scratch
 - Not an evolution of ns-2
 - Targeted for research and education
 - Community-oriented open-source development
- Programing languages
 - C++ (e.g., Core, Models)
 - Python (e.g., Scripting, Visualization)

ns-3 – some Protocols and Models

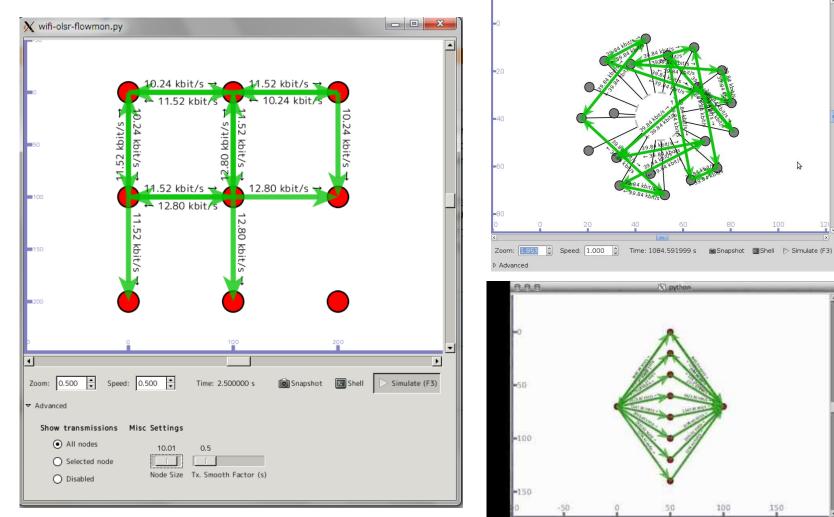

- Mobility models
 - Fixed, Random direction, way-point, ...
- Channels and NetDevices
 - Point-to-Point, CSMA/CD, 802.11, LTE, ...
- Propagation Delay Models
 - Constant Speed, ...
- Propagation Loss Models
 - Friis, 2-Ray, Fixed, ...
- IPv4 and IPv6 support
- Routing
 - Static, OLSR, AODV, ...
- Socket-like API
 - TCP and UDP support
- Traffic generation
 - On/Off application, Bulk send application, UdpEchoApplication, ...
- Helpers

ns-3 Simulation

- Event Scheduler
 - Simulated time

ns-3 Emulation

- - Real time •
- CRC checksum calculation enabled •


INESCTEC

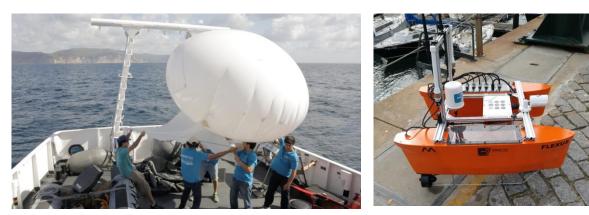
ns-3 – Results: Trace Files and FlowMonitor

- Trace Files
 - ASCII traces
 - Write your own std::couts, etc. in the code
 - Enable automatic traces of network events
 - Packet arrival and characteristics, ...
 - PCAP traces
 - E.g., to open and analyze in Wireshark
- FlowMonitor
 - TCP and UDP support
 - Gathers network flows statistics at IP level *xml* file that can be **parsed**
 - Packet delay histogram
 - Packet size histogram
 - Start and end time of each flow
 - Packet loss ratio
 - Average throughput

INESCTEC

ns-3 – Python Visualizer

Advanced


B

Time: 6.300000 s Snapshot > ¥mulate (F3)

ns-3 as a Digital Twin for Wireless Testbeds

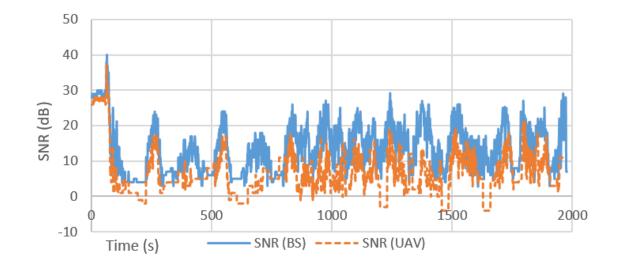
- Background and Motivation
- Trace-based Simulation Approach (by INESC TEC)
 - New upcoming ns-3 apps
- Main Conclusions
- Future Work

Background and Motivation

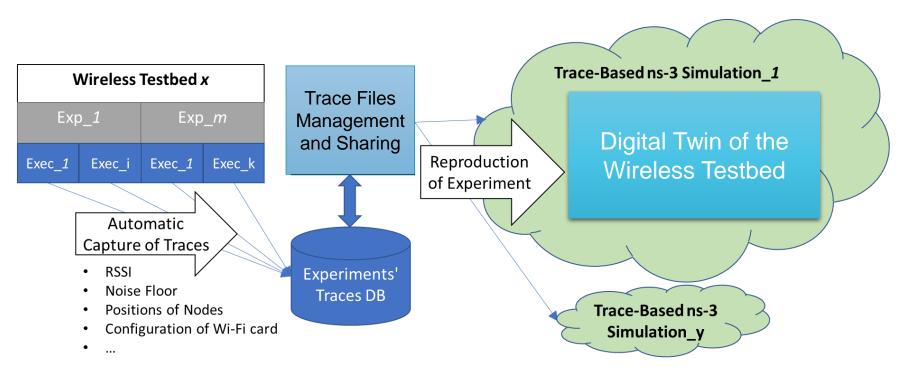
Problem

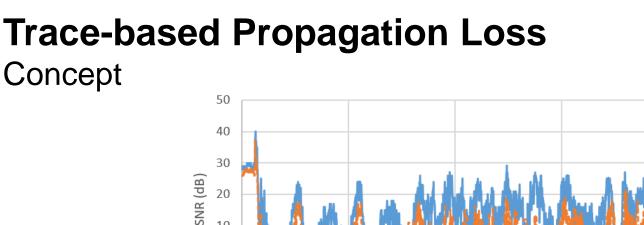
- Emerging Testbeds experiments are difficult to repeat and reproduce
 - Unstable physical conditions
 - Cost and operational constraints
 - Simulation is too optimistic

Objective


- Enable repeatable and reproducible experiments without access to the testbed
 - Accurately reproduce Real-World Experiments conditions in ns-3

Trace-based Simulation Approach

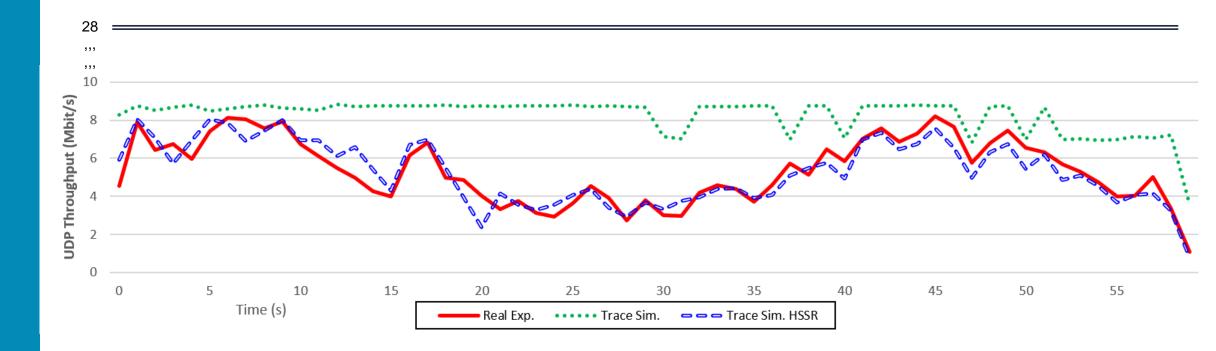

- Capture Traces of Real Experiments
 - Position of Nodes
 - GPS or cartesian coordinates
 - Radio link quality
 - Signal-to-Noise Ratio (SNR)
 - Other metrics



Trace-based Simulation Approach

- Reproduce Traces in ns-3
 - Configuration of Wi-Fi Cards \rightarrow Channel, BW, standard, etc.
 - Positions of Nodes → WaypointMobilityModel
 - Link Quality \rightarrow <u>Trace-based Simulation Models</u>

- Each received successfully received frame is a valid **RSSI** sample
- The reported noise floor is also considered


10

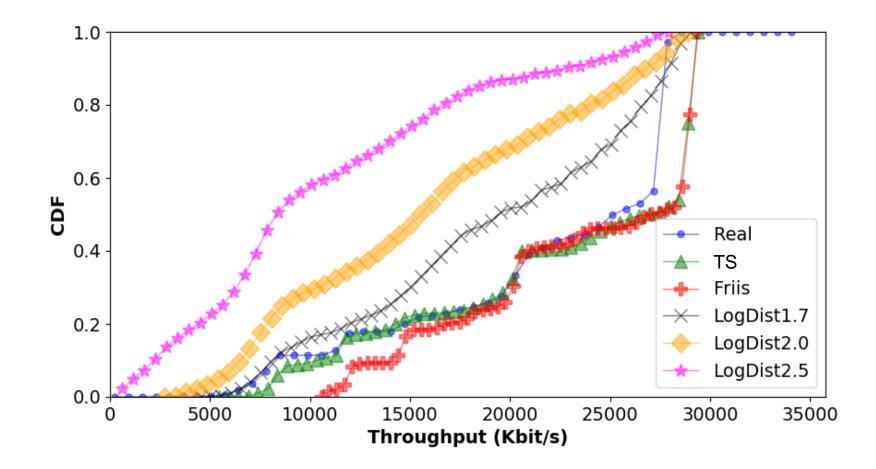
0

- ErrorRateModel ۲
 - *Input:* PHY rate, Frame size, SNR (from real node)
 - *Output:* FER
- FER causes frame retransmissions \rightarrow closer to real **throughput and delay** •
 - ns-3 Minstrel auto-rate adaptation is used ٠

Trace-based Propagation Loss Low vs. High SNR Sampling Rate

		Average UDP Throughput (Mbit/s)				Relative Error		
Exp.#	Flow	Real Exp.	Trace Sim. HSSR	Trace Sim.	Pure Sim.	Trace Sim. HSSR	Trace Sim.	Pure Sim.
5 (second run)	C->A	5.4	5.3	8.3	28.2		53.9%	426.2%

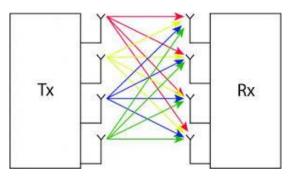
Trace-based Propagation Loss


Evaluation – Fed4FIRE+ w-iLab.2 Testbed (SIMBED Project)

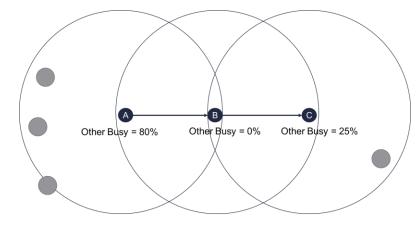
• Varying distance and TX power

Trace-based Propagation Loss

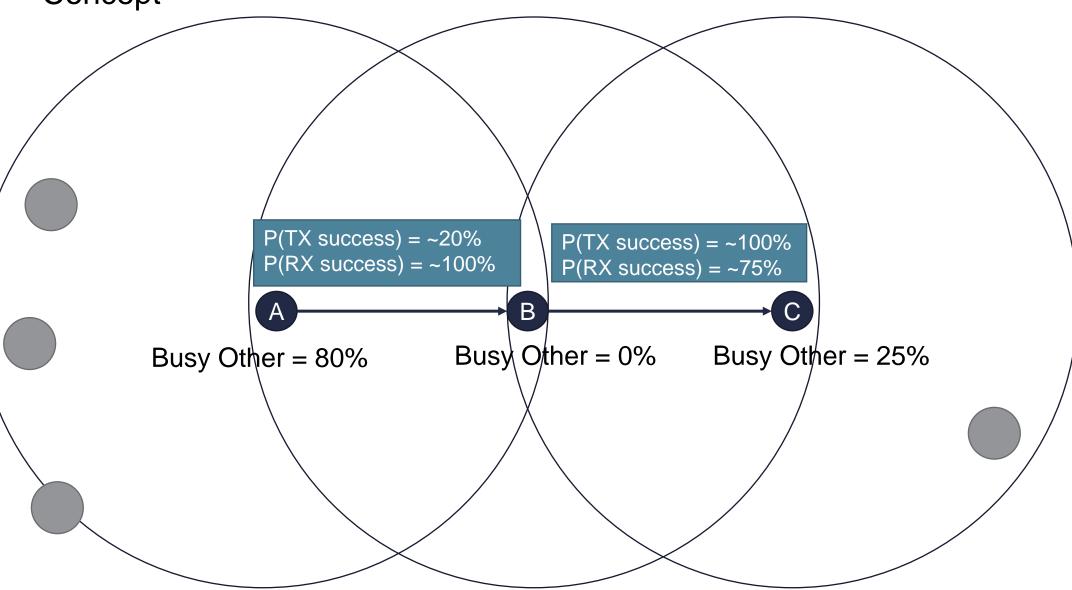
Evaluation – <u>Static</u> Scenario @ Wi-Lab.2 (SIMBED Project) 802.11a, SISO


Trace-based Propagation Loss

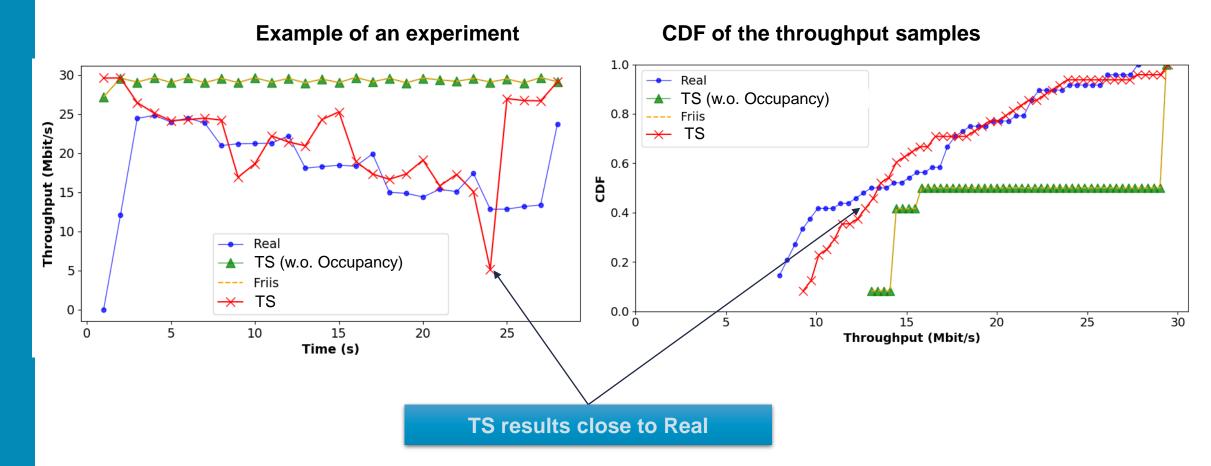
Evaluation – <u>Mobile</u> Scenario @ Wi-Lab.2 (SIMBED Project) 802.11a, SISO


Trace-based Wi-Fi Rate Adaptation

Concept


- SNR trace alone is not enough for MIMO scenarios
 - The number of radio streams depends on the CSI influenced multipath environment
- Captures and Reproduces the MCS and number of radio streams used to transmit frames to each of the neighboring nodes
 - Each successfully received frame is a valid sample
 - A modified **Wi-Fi Station Manager** is used to reproduce the traces
- Resulting auto-rate adaptation is now deterministic, based on the real traces
- Frame losses remain based on the ns-3 ErrorRateModel
 - MCS is, however, not affected by MAC layer retransmissions

Concept



- Channel occupancy traces
 - Wi-Fi interfaces report **TX-time**, **RX-time** and **total busy time** in *ms*
 - Busy time caused by other nodes from concurrent networks can be calculated
- Sender Model
 - If channel is "sensed" busy, frame is not transmitted
- Receiver Model
 - Causes frame losses on purpose, acting as collisions from hidden nodes
 - Only used if "busy other" at RX node is higher than the TX node (simplification)

Concept

Evaluation – Static Scenario @ Wi-Lab.2 (SIMBED+ Project) 802.11a, 20 MHz (Sender Model)

Evaluation – Static Scenario @ Wi-Lab.2 (SIMBED+ Project) 802.11a, 20 MHz (Receiver Model)

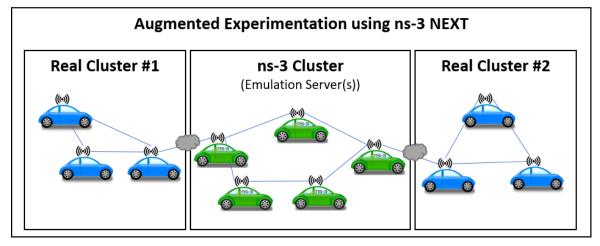
Example of an experiment CDF of the throughput samples 1.0 30 --- Real TS (w.o. Occupancy) 25 0.8 Friis Throughput (Mbit/s) TS × 0.6 CDF 0.4 Real TS (w.o. Occupancy) 5 0.2 Friis → TS 0 0.0 -15 20 25 5 10 0 10 15 25 0 20 30 Time (s) Throughput (Mbit/s) TS results close to Real

Trace-based Simulation Approach

Summary and upcoming ns-3 apps

Trace Type	Trace files and its variables	Trace-based ns-3 model	
Link Quality	Signal-to-noise ratio (SNR)	TraceBasedPropagationLoss → Validated in SIMBED	Real SNR
	PHY rate/MCS Number of radio streams	TraceBasedWiFiRateAdaptation → Validated in SIMBED+	ΜΙΜΟ
	Channel occupancy	TraceBasedWiFiChannelOccupancy - "Sender" Model - "Receiver" Model → Validated in SIMBED+	Shared radio spectrum
Position of nodes	Cartesian coordinates	WaypointMobilityModel	

Main Conclusions


- The **TS approach** with its **three models** supports realistic reproduction of
 - SNR (Asymmetric)
 - **MIMO** operation (MCS and number of radio streams)
 - Shared radio spectrum (influencing, both, TX and RX operations)
- These models enable ns-3 to be used as a Digital Twin for Wireless Testbeds
 - Saves resources
 - Perpetuates experiments, even if the original testbeds cease to exist
 - Allows Traces to be referenced in scientific publications

Future work

- Keep improving the TS approach/Digital Twin
 - Detection of link failure
 - Dynamically adjust traces resolution to the scenario
 - Add support for beamforming
- Assess TS approach applicability to other wireless technologies
 - E.g., Cellular, IEEE 802.15.4
- Software platform to assist the processes of traces capturing, managing and sharing
 - Share past or real time execution of experiments
- Fine-tune and learn new **path loss** and **mobility** models
 - Accurate simulations with different **number of nodes**, **mobility** and **duration**

Future work

- Augmented Experimentation
 - Scale real testbeds with accurately emulated resources
 - Seamless interaction between real and emulated resources

🕽 Wireless Channel Tunnel over Internet

Thank you!

Questions?

ns-3 as a Digital Twin for Wireless Testbeds

29º Seminário da RTCM

Helder Fontes – helder.m.fontes@inesctec.pt