Improving WiFi communication with surface nodes at near-shore on tidal waters

Miguel Gutiérrez Gaitán
P. d'Orey, P. M. Santos, M. Ribeiro, L. Pinto, L. Almeida, J. Borges de Sousa

February 4, 2022 – 31st RTCM Seminar, Porto (Virtual)
Abstract

We propose two link-design methods for improved communication between an onshore station and a surface node over tidal waters.

Method 1: for dynamic surface nodes
It identifies a favorable distance region for good communication quality at each point of the tide.

Method 2: for stationary surface nodes
It determines the optimal height/distance region that minimizes the path loss averaged during the whole tidal cycle.
We propose two link-design methods for improved communication between an onshore station and a surface node over tidal waters.

Method 1: for dynamic surface nodes

It identifies a favorable distance region for good communication quality at each point of the tide.

Method 2: for stationary surface nodes

It determines the optimal height/distance region that minimizes the path loss averaged during the whole tidal cycle.
Abstract

We propose two link-design methods for improved communication between an onshore station and a surface node over tidal waters.

Method 1:
for dynamic surface nodes

It identifies a favorable distance region for good communication quality at each point of the tide.

Method 2:
for stationary surface nodes

It determines the optimal height/distance region that minimizes the path loss averaged during the whole tidal cycle.
Wireless radio links deployed over aquatic areas are strongly affected by the conductive properties of the **water surface**, strengthening **signal reflections** and increasing interference effects [1].

![Diagram](image)

2-ray model [2]

\[h_0 \quad h_t \]

average water level

signal reflection

water level shift due to tides

\[d \]

onshore station

surface node

surface plane

\[\Delta_k \]

Improving WiFi communication with surface nodes

Recurrent natural phenomena such as tides or waves cause shifts in the water level that, in turn, change the interference patterns [3].

Shift on the water level e.g., $\Delta_k = 30 \text{ cm}$
Recurrent natural phenomena such as tides or waves cause shifts in the water level that, in turn, change the interference patterns [3].

Shift on the receiver height e.g., $\Delta_k = 2$ cm

Scenario 1: Shore-to-AUV Wi-Fi link in LOS

Method 1: We determined a convenient distance to shore that will lead to **sustained high signal strength** in a broad region so that the vehicle can be driven to that distance and initiate **communication with high quality.**
Experimental results clearly show the validity of our Link Quality Model (LQM) and the interest of method 1.

RSSI measurements

Analytical results (two-ray model)

- Clear match with the 2-ray model estimates
- Favorable transition
- Unfavorable transition
- >15-20dB gain and better stability
Experimental results clearly show the validity of our Link Quality Model (LQM) and the interest of method 1.

\(h_{\text{Tx}} \approx 4.4 \text{ m} \)

\(h_{\text{Tx}} \approx 4.7 \text{ m} \)

Shift on the water level e.g., \(\Delta_k = 30 \text{ cm} \)
Scenario 2: Shore-to-Buoy link in LOS

Method 2: Based on [4] we reduced the so-called **tidal fading** by acting on the **antenna height or link distance** to minimize the average path loss over a full tidal cycle, providing the **best channel conditions on average.**
Scenario 2: Shore-to-Buoy link in LOS

Method 2: Based on [4] we reduced the so-called tidal fading by acting on the antenna height or link distance to minimize the average path loss over a full tidal cycle, providing the best channel conditions on average.

\[f = 2.4\text{GHz} \hspace{1em} h_r = 0.6\text{m} \]

Scenario 2: Shore-to-Buoy link in LOS

Method 2: Based on [4] we reduced the so-called tidal fading by acting on the antenna height or link distance to minimize the average path loss over a full tidal cycle, providing the best channel conditions on average.

\[f=2.4GHz \ hr=0.6m \]

Scenario 2: Shore-to-Buoy link in LOS

Method 2: Based on [4] we reduced the so-called tidal fading by acting on the antenna height or link distance to minimize the average path loss over a full tidal cycle, providing the best channel conditions on average.

<table>
<thead>
<tr>
<th>Antenna Height (m)</th>
<th>Avg. Path Losses (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

- *f=2.4GHz hr=0.3m*
- *f=5GHz hr=0.3m*
- *Scenario 2: Shore to Buoy link in LOS*

Conclusions

This work provides novel **positioning** and **antenna-design** methods to **mitigate the impact of tides** on the LOS shore-to-surface channel.

We also provided a novel and clear **experimental validation** of the two-ray model with Wi-Fi technology over water at near-shore.

Method 1:
for **dynamic** surface nodes

Method 2:
for **stationary** surface nodes
Conclusions

This work provides novel **positioning** and **antenna-design** methods to **mitigate the impact of tides** on the LOS shore-to-surface channel.

We also provided a novel and clear **experimental validation** of the two-ray model with Wi-Fi technology over water at near-shore.

Miguel Gutiérrez Gaitán

P. d'Orey, P. M. Santos, M. Ribeiro, L. Pinto, L. Almeida, J. Borges de Sousa

Thank you!